


IL LIAC 1 V Quadrant 

The I LLl AC IV System represents a fundamentally different approach to 
data processing. The limitation imposed by the velocity of light, once 
thought to be an absolute upper bound on computing power, has been 
stepped over by several approaches to computer architecture, of which the 
ILLIAC IV is the most powerful by as much as a factor of four. 

The conquest of the limitations of the velocity of light was foreseen by 
Herman Kahn and A.J. Wiener in 1967, when they wrote: ". . . . .over the 
past fifteen years this basic criterion of computer performance has 
increased by a factor of ten every two or three years . . . . . While some will 
argue that we are beginning to reach limits set by basic physical constants, 
such as the speed of light, this may not be true, especially when one 
considers new techniques in time sharing, segmentation of programs to add 
flexibility, and parallel processing computers. . .(such as). . .the ILLIAC IV 
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ILLIAC IV represents a significant step forward in computer systems 
architecture offering 

- greatly improved performances: 

200 MIPS computation speed 

109 bitslsec I10 transfer rate 

106 bytes of high-speed integrated circuit memories 

2.5 X 109 bits of parallel disk storage 

- contemporary technology: 

ECL circuits 

semiconductor memories 

belted cables 

- and a new approach to the art of computing using parallelism, 
which offers an opportunity t o  programmers to utilize the vast 
power of the system as effectively as possible. 



MAJOR SYSTEM ELEMENTS 

As shown in the accompanying system diagram, the major elements of the 
ILLIAC IV System are the Array Subsystem, the I10 Subsystem, the Disk 
File Subsystem, and the B 6700 Control Computer Subsystem. 

The main computing power resides in the Array Subsystem. The ECL 
circuit family is used to implement the logic in the Array Subsystem. In the 
array is a Control Unit (CU) directly governing 64 identical Processing Units 
(PU). Each PU is principally a combination of a Processing Element (PE) 
and a Processing Element Memory (PEM). The PE has no independent 
control except for mode, some data dependent conditions, and addressing 
within i ts  own memory. Mode control permits a PE to accept or ignore a 
broadcast control sequence from the CU, depending on the current status 
of i t s  mode bit. The PE is essentially a four-register arithmetic unit capable 

A of executing a full repertoire of instructions having 64-bit, 32-bit, and &bit 
operands. Directly associated with each PE is a PEM having 2048 words of 
64-bits each, 4096 words of 32 bits each, or some combination of both 
sizes. 

The 110 Subsystem controls the routing of data among the other major 
elements of the system a?d a 1024-bit wide interface that may be used for a 
variety of purposes, depending on the application. 

The Disk F'ile Subsystem provides an intermediate data storage for the array 
having a storage capacity up to 2.5 X lo9 bits of storage and a transfer rate 
up to lo9 bits per second. 

A B 6700 is the control computer for the ILLIAC IV System. This 
computer provides executive control, facility allocation, peripheral 
equipment control, 110 initiation and control, fault recovery, and program 
assembly and compilation. 

The logic of the I10 Subsystem, the Disk File Subsystem, and the B 6700 
Control Computer Subsystem is implemented in the CTL circuit family. 

Each of these elements of the system is discussed in more detail on the 
following pages. 
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FEATU.RES OF ARRAY OPERATION 

Efficient operation of parallel array programs requires machine features 
that are unfamiliar to designers and users of conventional serial 
machines. The following discussion, which highlights the operation of the 
array at the individual instruction level, has several sections. The first 
presents the conventional aspects of array operation, and hence, discusses 
what appears to be a conventional instruction set. The other sections 
discuss the capabilities which have been added to facilitate array processing, 
such as on-off control of the Processing Elements, routing of data among. 
Processing Elements, one-clock alignment and normalization of floating 
point numbers, independence among PE's of the address field of the 
instruction, and broadcasting. 

CONVENTIONAL INSTRUCTION SET 

There are 65 computers in the ILLIAC IV array. Of these, 64 are identical, 
and are called the Processing Elements (PE). The 65th computer is 
imbedded in the Control Unit (CU). Most instructions are conventional, 
such as add, multiply, fetch, store, and are either PE or CU instructions. A 
PE multiply instruction, for example, causes the contents of every PE 
accumulator to be multiplied by a second operand specified in the address 
field of the instruction. A CU add instruction adds the contents of one of 
the words of the local operand store to the contents of one of the four 
accumulators in the CU. The CU computer is used for purposes like loop 
control. The major burden of the data processing is on the PE's, whose 
instruction set is  relatively conventional, containing instructions such as 
add, multiply, logical OR, divide, fetch, store, and register-to-register 
moves. Typical instruction times are given on page 8. 

ONE CLOCK NORMALIZATION 

All PE's must operate together with essentially no control response back to 
the CU. For example, when normalizing sums from floating point addition, 
every PE has a different shift amount. I f  the various PE's took different 
times to shift, the CU would have to wait a minimum of 240 nanoseconds 

until a l l  PE's had reported the completion of shifting. The 240-nanosecond 
period is the round trip time for the cabinet length of over 50 feet. 

A barrel switch is, therefore, provided in the PE that can shift any amount 
in one-clock time. The CU, giving the command to normalize, does not 
wait for a response before going on. Likewise, all shift instructions take 
one clock time since they use the same barrel switch. 

ROUTING 

Routing is a mechanism whereby the PE's can exchange data rapidly and 
simultaneously. The instruction that accomplishes this is called the "route" 
instruction. Routing consists of taking 64 words of data in the 64 registers 
in the 64 PE's and shifting it among the PE's by distance N modulo 
64. That is, data starting in PEo winds up in PEN; data starting in PE1 
winds up in PEN+^. All such shifts are done simultaneously, so that all 64 
words of data are transferred in one shift time. Shift time is a function of 
N, being the minimum of 125 nanoseconds for distances of either 1,8, -1, 
or -8. 

The above figure shows this end-around routing connection 
schematically. In addition to the neighbor-to neighbor linkages which form 
the PE's into a ring, there are connections of PE's eight apart such that data 
can leapfrog intermediate PE's when the distance to be covered is large. 



ON-OFF CQNTROL 

On-off control of the PE is effected with control bits called mode 
bits. When the mode bit is set, the PE is operating normally; when the 
mode bit is reset, the PE will not execute the current instruction. Resetting 
the mode bit is, therefore, a mechanism whereby the PE can branch 
forward in the instruction stream. 

There are two ways of controlling the PE's with the mode bits. Mode bits 
may be set by the result of tests in the PE's, or they may be set 
unconditionally by the CU. To illustrate the first method, assume a case 
where the PE should control its own performance (Let P be the PE 
number): 

IF X(P) >Y(P) THEN DO STATEMENT A, 
ELSE DO STATEMENT B. 

In conventional computers the code would read something like the 
following: 

I f  X(P) >Y(P) then go to L; 
Statement B; 
Go to M; 

L Statement A; 
M Next. statement; 

In the lLLlAC IV, the code would read as follows, and 64 passes through 
the code would be executed simultaneously. 

I f  X(P) >Y(P) set mode bit (P) to ON; 

Statement A; 

Complement mode bits; 

Statement B; 

Set all mode bits on; 

Next statement; 


In the extended FORTRAN being implemented for ILLIAC IV, PE's can be 
turned on and off by "control vectors." These vectors have one bit per 
element, and are used to mask out any given operation. The control vectors 
are fetched to the CU and sent directly to the mode bits of each PE. 

Since the PE's each can operate on either one 64-bit word or two 32-bit 
words, two separate mode bits are provided in each PE for 32-bit operation 
so that control vectors or PE tests can turn on and off the halves of the PE 
independently of each other. The effect, as far as mode bits are concerned, 
is like having 128 independent 32-bit Processing Elements. Mode bit 
control does not interfere with routing. 



I
INDEPENDENCE OF ADDRESSING AMONG PE MEMORIES m 
Although each PE instruckion is for 64 PE's, it contains only one address 
field. However, each PE has its own independent memory (PEM). To 
achieve independence of addressing within the PE memories, each PE is 
provided with an index register. The contents of this index register can be 
specified to be added to the content of the address field. 

The simplest example of the utility of the index register lies in the fetching 
of a matrix that is stored skewed (See illustration below). By not indexing, 
a matrix row is fetched. By inserting a function of the PE's own number 

into the index register, and then indexing the address, a column of the 
matrix is fetched into the PE's (Column 4 is shown in black below left). 

Indexing at the PE level is also allowed on shift counts of shift instructions, 
and on the bit number of the bit-manipulation instructions, providing for 
versatility in nonnumerical processing. In double precision arithmetic, for 
example, the normalization correction, once developed, is inserted into the 
index register and used to control the double-length shift that accomplishes 
normalization. 

BROADCASTING 

Every PE instruction is sent to the PE's from the CU as 266 enable levels to 
each and all PE's. Accompanying this set of enable levels is a 64-bit 
"common data bus" that also goes to a l l  PE's. Depending on the specific 
instruction and variant thereof, the data on the common data bus is used 
within the PE's as a 64-bit literal, or the least significant 16 bits may be 
used as the address of an operand in memory, or to designate a register in 
the PE, or as a shift distance. Memory addresses and shift distances may be 
further indexed in the PE, as described above. 

This facility to transmit 64-bit literals is used in the software to transmit or 
"broadcast" those variables to the PE's that are constant across all PE's, as 
in the expression: 

where P is the PE number. 

Variable A will be fetched to the CU and broadcast, being the same for al l  
PE's; whereas, B(P) is distinct in each PE and will be fetched out of the PE's 
memory. 



PERFORMANCE 

Algorithms for estimating the "speed", "power", or "throughput" of 
computers have been the most elusive and illusory in the industry. Among 
the simpler means employed have been the clock rate, add time, and more 
recently, "Mips" (million instructions per second). Bench mark programs 
have also been used with more success. Presented here is a discussion of the 
clock rate, the instruction times for some typical instructions, and a 
discussion of Mips. Such oversimplifications are recommended for use on 
only the grossest basis for comparison among various computers, since the 
actual performance on any given application is dependent on factors such as 
the memory allocation algorithm used, the compiler efficiency, as well as 
the application itself and the efficiency of the application programs. Listed 
below are salient characteristics of ILLlAC IV which depict the "speed", 
"power", and "throughput" of the machine. The following data are based 
on a 64-PU system. Future copies can also be built with 8, 16, or 32 PU's: 

Data Rates 

Between the 64 PE's and their 64 PEM's - 9,362,285,714 bitslsec (64 paths 
at 64 bits each 312.5 to 437.5 nanoseconds) 

Between array memory and parallel disks - 1,004,000,000 bitslsec 
(980.468 transfershc of 1024 bits each) 

Word bus of the B 6700 -40,000,000 bitshec 

Clock Rates (MHz) 

Array Subsystem 

I10Subsystem 

B 6700 Subsystem 

Clock track on parallel disk file 

Memory Sizes 

Array Subsystem 8,388,608 bits or 
(May be expanded in future copies) 1,048,576 bytes or 

131,072 words of 64 bits or 
262,144 words of 32 bits 

B 6700 Subsystem 524,288 words of 48 bits 
(Modular in increments of 16,384 words) 

Parallel disk file 2,516,582,400 bits 
(Modular in increments of 78,643,200 bits) 

Memory Times 

Array -cycle time 200 nanoseconds (bare memory) 
312.5 nanoseconds (in system) 

B 6700 - cycle time 1.2 microseconds 

Parallel disk system -access time 19.6 milliseconds 
(Average access time for a single item) 

FLOATING POINT ADD AND MULTIPLY TIMES 

Floating point add time, including alignment of operands, addition, and 
normalization of the sum is 4.9 nanoseconds per pair of 64-bit operands, 
and 2.9 nanoseconds per pair of 32-bit operands. This is based on the time 
to execute one add instruction simultaneously on 64 pairs of 64-bit 
operands in 312.5 nanoseconds, and on the execution of one add 
instruction simultaneously on 128 pairs of 32-bit operands in 375 
nanoseconds. 

Floating point multiply time, including normalization of the product, is 8.8 
nanoseconds per pair of 64-bit operands and 4.9 nanoseconds per pair of 
32-bit operands. This is based on the time to execute one multiply 
instruction simultaneously on 64 pairs of 64-bit operands in 563 



nanoseconds, and on executing one 
m u l t i p l y  instruction simul-
taneously on 128 pairs of 32-bit 
operands in 625 nanoseconds. 

These add and multiply times 
assume that the operands are al- 
ready in place in the registers of 
the PE's. This was true for 50 
percent of the add instructions and 
for over one third of the multiply 
instructions in the codes sur-
veyed. For the other 50 percent 
add instructions and the more than 
60 percent multiply instructions, a 
memory access time of 375 nano- 
seconds must be added. Overlap in 
the Control Unit will hide an 
undetermined fraction of this 
memory access time. 

ILLUSTRATIVE KERNELS 

To illustrate ILLlAC lVrs speed of operation the times required to evaluate 
some simple arithmetic expressions are given. 

For 64 variable 
for all j - 0.875n 

(Method of nested polynomials) 



MIPS 

"Mips" (million instructions per second) is a measure that has been widely 
used to describe the computing capabilities of various machines. A figure 
of 200 Mips is used for the I LLl AC IV, based on a large set of assumptions 
which are necessary as there is no agreement in the industry as to what 
constitutes an instruction. These assumptions include: 

The instruction frequencies counted from 12 different codes 
are typical. 

The overlap in the Control Unit is 95 percent efficient and the 
proportion of Control Unit instructions is less than 25 percent 
of the total. 

The code uses the full 64 Processing Elements efficiently. 

For codes using only one of the 64 Processing Elements a t  a time, the figure 
of 4.5 Mips is used. 

THE EFFECT OF PARALLELISM ON THROUGHPUT 

As is well known, the throughput of ILLIAC IV is problem dependent. To 
oversimplify, assume some fraction, x, of a problem is stubbornly serial and 
that the rest of the problem is perfectly parallel and fits the 64-PE 
width. Also assume that the problem takes a time, Ts on a hypothetical 
one-PE machine, then it takes a time, Tp, on the parallel machine: 

Thus, if 90 percent of the problem is perfectly parallel and 10 percent is 
stubbornly serial, one expects a speed improvement by a factor of 8.8 on 
ILLIAC IV. 

The above analysis is an oversimplification because, in general, portions of 
problems are neither perfectly parallel nor perfectly stubborn about being 

serial. Among the items that can be done to allow some parallelism of 
operation in a problem that appears to be serial are: 

Adopt some variation in the algorithm that allows 
parallelism. In some cases the variant algorithm will be less 
eff icient mathematically than the stubbornly serial 
algorithm. However, because it allows parallelism, it causes a 
net gain in efficiency on the I LLlAC IV. Matrix inversion and 
data transfers offer examples of this sort. 

Reallocate the memory so that the variables that were all in 
one PE, and therefore could only be treated one at a time, are 
spread across many PE's. 

Thus, programs that are executed on the ILLIAC IV, in comparison to the 
same problems being solved on a hypothetical one-PE serial machine, run 
with an efficiency that is a combination of many effects. For example: 

bl Some small pod6n of the problem really is stubbornly serial, 
and runs with no speed-up over the one-PE comparison case. 

Some larger portion of the problem runs efficiently in parallel, 
approaching a 64: 1 speed-up over the one-PE comparison case. 

Much of the program runs in parallel on the machine, with 
varying degrees of efficiency. This variation is due to parallel 
operations that do not use 64 PE's and also to the cases in 
which the parallelism was bought at the price of a less efficient 
algorithm. For these sections of the code, the speed-up over 
the one-PE comparison case is much greater than 1:l but less 
than 64: 1. 

Therefore, it can be seen that the speed-up factor available on the l LLIAC 
IV is dependent on the application and on the cleverness of the 
programmer; it will vary between 1 : 1 and 64: 1 over a hypothetical machine 
with only one PE. It is also true that better speed-up is expected in practice 
than that predicted by a naive separation of problems into "serial" vs. 
"parallel". 



APPLICATIONS Fragment the indices into their individual bits, setting 

The power of parallel processing is most effectively applied to solving 
problems when they are arranged in a parallel manner. To illustrate the 
methods involved, two il lustrations (one computational, one 
non-computational) are given. 

FOURIER TRANSFORMS 

As an analytical technique, transformation to the frequency domain has too 
many applications to catalog. Fairly recent developments have produced a 
collection of "fast Fourier transform" methods. Perhaps, the first widely 
read of these is from the article by Cooley and Tukey. 

Fast Fourier transforms turn out to be ideal for ILLlAC IV, operating at 
almost full efficiency, thereby opening up all those problems amenable to 
solution in the frequency domain to efficient attack. These include linear 
differential equations, filtering, simulation and signal analysis. 

The fast Fourier transform method is described as follows: 

(=N) samples of some time 2"' Let Ac, where k runs from 0 to 2""-1, be the 

The method is based on the observation that wjk is the product of factors 
related to the fragmented indices, and that these individual factors (such as 
wjm-1 or wk0) are repeated in a regular way in the 22m values of W J ~ .There 
are only 2m of these factors. 

The transformation process proceeds as follows: 

The Ak, multiplied by appropriate W factors, are combined pair-wise into a 
vector Bl,k. The vector B1 k is combined pair-wise into a vector B2,k, and 
so on until a vector Bm,k is iormed. 

The vector Bmnk is the desired transform Xk, except for the ordering of the 
index. I f  we reverse the order of the bits in the index k (call that k'), then 
we find that Bmgk' = Xk. 

The pair-wise combination of the elements of each succeeding vector to form 
the succeeding vector involves elements of the vector that are successively 
closer by factors of two. Consider an example where m = 10; there are 
1024 points in the prime function. The formation of the elements of the 
vector B1 involves elements of Ak that are 512 samples apart. Each 
element of B2 is the sum of two elements of B1 that are 256 samples apart 
in the index, down to BI0, whose elements are the sum of neighboring 
elements in Bg. 



The equations for the vectors Bqrn are, writing the indices in their 
fragmented form 

On ILLIAC IV, the Ak elements are divided into 64 equal pieces. For the 
example of 1024 time samples, there are 16 per Processing Element 
(PE). The first PE contains the Ist, 65th, 129th, etc. time sample; the 
second PE contains the 2nd. 66th, 130th. etc. time sample, and so on 
throughout all PE's. Computations for all but the last 5 steps are therefore 
carried on within the individual PE's with no interaction between PE's. For 
the 5th from the last step, we must swap operands between PE's that are 32 
apart as indicated in the top layer of the accompanying figure. This is a 
simple route by distance 32. For the 4th from the last step, we must swap 
operands between PE's that are 16 apart as indicated in the next to the top 
layer of the figure. Half the operands are routed by a distance +16; half by 
a distance -16. The third from last step routes half the operands by distance 
+8, half by distance -8. This continues through distances 4 and 2 to form 
the results. 

As described above, the results are produced correctly, but in scrambled 
order. Rearrangements of the data can be accomplished by fetching, 
routing, and storing. Approximately 160 or less route instructions are 
required to move the 1024 result points into their proper locations. 

Data Transfer Paths, Fast Fourier Transform 
(16PE Example) 

TABLE LOOK-UP 

Table look-up is an excellent example of the versatility of parallel 
processing. Investigation reveals several powerful techniques for 
implementing table look-up. The choice depends mainly on the behavior of 
the search key and the table size and regularity. Among these techniques 
are the following: 

Replicate the Table - 64 copies of table. Tolerable only if the 
table is small. 



Repeat the Table Several Times and Route the Computation - If  
the table were repeated eight times, for example, the first section 
would appear in PE's 0, 1, 2. 3, 4, 5, 6, and 7. The second 
section would appear in PE's 8 through 15; the third, in PE's 16 
through 23 and so forth to the las t  section, which would appear 
in PE's 56 through 63. The table look-up would now be 
performed eight times, once for each section of the table. At 
each performance the routine would recognize whether it was in 
the proper section of the table in each PE. By the time the eight 
look-ups were complete, 64 values would be obtained. The 
actual number of repetitions for a particular problem depends on 
the relative size of the table and the amount of computation time 
available as a trade-off. 

Compute -Some tables can be replaced by computation. When 
this is true, it is because, in a serial machine, the computation 
takes longer than the table look-up. In a parallel machine, the 
computation runs 64 times as fast, so that the trade-off may 
favor computation. 

Interpolate More Intelligently - Use of more complicated 
interpolation formulas results in fewer entries being needed in a 
table. This is a special case of substituting more computation for 
less table. 

Use Regularities of the lndependent Variable -Suppose a large 
table is storing f(x), where x is the independent variable. In 
many problems, x will vary smoothly from one PE to the 
next. We keep in any given PE, say PE number "p", only that 
portion of the table that refers to values of f(x) for x near the 
value xp contained in that PE. As xp changes, we come to the 
case that f(xp) is no longer contained in the portion of the table 
in PE number p. Then we digress to a table rearranging routine, 
which, in general, will only have to move copies of values from 
neighboring PEs. 

-- 7  

PE NUMBER PEO PE1 PE2 P E ~  PE4 PE5 PE6 PE7 

VALUE OF X ( AT 
THIS STAGEOF THE 4.5 
COMPUTATION) 

illustration of Table Stored Using Regularities of the lndependent Variable 

The accompanying figure shows an example of such a table 
having 100'items with only 25 items required to be stored in each 
PE of the 8-PE example array. Only as much of the table as 
corresponds to the range of x is stored in irnmediately accessible 
memory (84 of the items in the table of the example). When x 
goes out of range of the irnmediately accessible table (above 84 in 
the example), more table must be brought in (Perhaps, a copy 
stored in array memory but in more compact form). 



SYSTEM ELEMENTS 

ARRAY SUBSYSTEM 

The concept of the ILLIAC IV is the use of an array of separate and 
identical Processing Units. This architecture leads to programming 
flexibility that is not found in the competing architectures. For example, 
access time to memory is shorter and addressing memory is made flexible 
by the existence of a separate address in each Processing Unit. In addition 
the replication leads to economy of design and manufacture. 

Control Unit (CU) 

The Control Unit is the portion of the ILLIAC IV System that performs 
the initial processing of instructions up to and including the generation of 
detailed instruction microsequences for a step-by-step control of the 
Processing Elements (PE). All execution of instructions in the array is 
controlled by the instruction decoding stations in the CU. 

The flow of instructions through the CU isshown in the figure by the green 
arrows that form a path vertically descending through the figure. The 
instruction stream enters the CU by being fetched from the array memory 
(PEM's) to the instruction memory that is local to the CU. Fetching is done 
in blocks of 16 instructions each. Management of this instruction memory 
is assigned to an autonomous section of the Control Unit called the 
Instruction Look Ahead (ILA). As the Advanced Station (ADVAST) is 
finished with each instruction, the ILA sends the next instruction to 
ADVAST for initial decoding. The ILA checks that the next instruction is 
in the instruction memory, and if it is not, the ILA fetches it and its whole 
block of 16 instructions. Since the ILA keeps track of the instructions in 
terms of their memory addresses, its operation is completely transparent to 
all programmers. 

The instruction set has two general types of instructions: those used 
primarily to control the internal operations of the CU (ADVAST 
instructions) and those used primarily to control Processing Unit (PU) 
operations (FINSTIPE instructions). The instructions that specify the CU 
operation (ADVAST instructions) are used for such functions as loop 

control and interrupt control. The FINST/PE instructions, which control 
the operation of the 64 pEts executing in parallel, may require some 
preliminary operation to be performed by the ADVAST (e.g., operations 
such as address arithmetic or the obtaining of a literal to append to the 
instruction). . . 

7 .. 8 
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When the instruction reaches ADVAST, it is decoded partially to determine 
which type it is, and ADVAST operations are performed on it as 
required. ADVAST has access to four accumulators, a 64-word local 
operand store, and miscellaneous registers. I f  the instruction concerns these 
registers only, it is executed entirely a t  ADVAST. If the instruction calls 
for PE operations, ADVAST may be required to do some preparation, 
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especially in the address/literal field of the instruction. Instructions that 
have been completed by ADVAST are then discarded. Those that are 
intended for execution by the array of PE's are passed to the Final 
Instruction Queue (FINO) with the ADVAST-prepared address/literal 
field. This revised instruction stream is now fed to the Final Station 
(FINST) which issues commands to {he PE's on the basis of the instructions 
it receives. The commands issued by the FlNST cause similar opera$m.gp 
take place simultaneously in all the PE's. 

ADVAST instructions affect nothing but ADVAST itself, and most 
ADVAST operations on other instructions are such that ADVAST and 
FlNST can operate most o f  the t ime independently of ope 
another. Consequently, the ADVAST operations can be carried on at the 
same time as the executions of some previous instruction in the FlNST and 
PE's. The FlNQ is composed of eight instruction storage positions that 
allow timesmoothing between ADVASTand FINST. This overlap between 
ADVAST and FlNST causes the Processing Elements to be kept 
continuously busy, as long as the number of ADVAST instructions is not 
too great in any given segment of code. 

An occasional instruction may rguire cooperation between ARVAST and 
FINST, or the PE's. These instructions will cause ADVAST to wait until all 
previous instructions are completed, a t  all stations, before their execution 
can proceed. 

ADVAST executes those portions of the code which can be called 
housekeeping and has a number of facilities to aid it in this task. One of 
these i s  the local operand store which serves several functions. For example, 
it may contain index words that are designed primarily for the control of 
loops of instructions; it may contain numerical variables that are to be 
broadcast to the PE's in parallel; or it may contain "control vectors" 
(words containing one bit per PE) that are destined to be transmitted to the 
PE mode bits for on-off control of the PE's. These functions are not 
explicit in the hardware, but the data in the local operand store is put to 
explicit use only as a function of the program being executed in 
ADVAST. The machine language of ILLIAC IV provides a number of 
instructions for exercising this control. For example: 

LOAD -Transfer one word from array memory to the local 
operand store. 

0 TX- -M -Test index (greater, less or equal as specified by 
the letters supplied for "- -"I against the limit contained with 
the index word, and modify the index by adding the signed 
increment also contained within the index word. 

0 LDL -Transfer a word from the local operand store to one of 
the accumulators from which preparation of the addresslliteral 
field of PE instructions takes place. 

LDE -Transfer each bit of the accumulator (assumed to 
contain a control vector) to the mode bit of the corresponding 
PE. 

0 SETC -Transfer the mode bit (a bit in the PE which turns it 
on and off) from each PE to the corresponding bit number of 
the accumulator. 

LEAD0 - Convert the leading ONE of the accumulator 
(assumed loaded by a SETC instruction) into i ts  corresponding 
bit number (which is now the PE number of the successful 
PE). 

The Memory Service Unit (MSU) resolves the conflicts of the three users of 
array memory: 110, FINST, and ILA. It also transmits the appropriate 
address to memory and exercises control over the memory cycle. 

The Test Maintenance Unit (TMU) provides the control channel to the CU 
from the 6 6700 and the manual maintenance panel. 

Processing Unit 

A Processing Unit (PU) functions as a general-purpose computer under the 
direction of the CU. All of the 64 PU's in the ILLIAC IV System are 
electrically, mechanically, and functionally identical. Each PU consists of a 
Processing Element (PE), a Memory Logic (MLU)., and a Processing Element 



Memory (PEM). Data and control inputs from the PE and MLU are shown 
below. 
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Processing Unit Data and Control Paths 

For control, the PE and MLU receive enable signals from the CU for the 
sequential enabling of data paths and logic during instruction execution and 
for controlling the reading and writing in the PEM. In addition, the CU 
monitors and controls the status of the PE's by using one input and one 
output of the mode logic in each PE. Similarly, it monitors the memory 
protect status of the PEM's by using an output from each MLU. 

Processing Element 

The PE is the execution portion of the PU and is devoid of al l  independent 
control with the exception of mode, which may be set by some data 
dependent conditions. Mode control permits a PE to accept or ignore a 
broadcast control sequence from the CU, dependent on i t s  current 
status. The PE is essentially a four-register arithmetic unit, as shown in the 
figure, capable of executing a full repertoire of instructions having 64-bit, 
32-bit, or 8-bit operands. Further, operations involving 64-bit and 32-bit 
words can be done in either fixed-point or floating-point representation. 

An arithmetic unit in the PE combines a carry-save adder tree and parallel 
adder with carry look-ahead logic to give a floating-point multiply in 9 

Processing Unit 

clocks and a floating-point add in 5 clocks. Both times include 
post-normalization. 

The instruction set of the PE is that of a largescale, general-purpose digital 
computer. Floating point arithmetic in both 64-bit and 32-bit words is 
provided, with options for rounding and normalization. Full word 
operations, 8-bit byte operations, operations ignoring exponents, operations 
using exponents only, and operations ignoring the4gns are among the 
instructions provided in the arithmetic group. A full set of tests is generated 
by  making al l  registers addressable and providing all possible 
comparisons. Test results are set into a mode bit which may be used to 
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Processing Element 

direct the flow of the instruction execution. Bit manipulation, shifts and 
logical operations are also included in the instructions set. 

Processing Element Memory 

The PEM provides the high speed, random access, primary storage for the 
ILLlAC IV. Each PEM provides storage for 204864-bit words, which totals 
131,072words. To obtain the high speed necessary for array operation, the 
PEM has been implemented using semiconductor memory techniques. The 
PEM interfaces with, and is directly controlled by, the MLU. 

The first 128 words of each PEM can be write-protected by setting an 
appropriate control bit. If a write is attempted in any of the word locations 
0 through 127when the bit is set, the memory cycle will not occur. 

Memory Logic Unit 

The MLU controls and effects the transfer of data between the PEM, the 
CU, the PE, and the 110 Subsystem. The MLU also enables non-memory 
data transfers between the CU and the PE. In addition to the timing and 
control logic for PEM operations, the MLU contains a memory information 
register used for the temporary storage of data to be written into or read 
from the PEM. 

DISK Fl LE SUBSYSTEM 

The ILLIAC IV Disk File Subsystem is based upon Burroughs' continuing 
development in head-per-track disk files. In each Storage Unit (SU), 
containing one independently rotating disk, 128 of these heads are 
simultaneously written or read, to achieve a data rate of 502X lo6 bits per 
second. Capacity is 78,643,200bits of data storage per Storage Unit. The 
disk in each Storage Unit rotates at 1530 rpm, for a rotation period of 39.2 
ms, and an average access time of 19.6ms for a single item. For multiple 
items, the Optimizer contained within the I10Subsystem is capable of up to 



Disk File Subsystem 

24 separate disk accesses within the 39.2 ms period. Upto 16 Storage Units 
are serviced by a single Electronics Unit (EU). The ILLIAC IV System is 
designed to accept two EU's, for a combined storage capacity of 
2,516,582,400 bits and a transfer of 1.004 billion bits per second. Each of 
the 128 tracks is split into three data lines, at one third the data rate, for 
interface to the Disk File Controller (DFC), so that there are 384. data lines 
between the EU and DFC. When the EU is not busy, these same lines are 
used to continually transmit the present rotational position (address) of all 
sixteen storage disks to the Optimizer. 

I10 SUBSYSTEM 

The I10 Subsystem, shown in the system diagram on the right, consists of 
the Descriptor Controller (DC), I/O Switch (IOS), Buffer I10 Memory 
(BIOM), and Disk File Controllers (DFC). 

The interface between the I/O Subsystem and the B 6700 control computer 
is designed to take advantage of the existing properties of the B 6700, while 
keeping simple the interface to the ILLIAC IV array. Control words are 
received over the scan bus interface provided from the B 6700 processor, 
and results are described in words transmitted back over this same interface. 

TWO data paths exist between the B 6700 Subsystem and the I/O 
Subsystem, one path being the Buffer I/O Memory (BIOM), and the other 
path leading directly into the Descriptor Controller (DC). The BlOM 
functions as a module of B 6700 memory, as seen from the B 6700, 
handling data transfers from the B 6700 into the I/O Subsystem. As seen 
from the ILLIAC IV system diagram on the next page, the BlOM can 
transfer data either onto the disk file or directly into the array 
memory. The data path to the DC uses the 48-bit word interface of the 
B 6700 multiplexor, which allows the DC to share a memory bus with the 
multiplexor; 9 
The DFC consists of two controllers that execute descriptors held in the DC 
for transfers between disk and array, disk and BIOM, BlOM and array, and 
real-time link and array. All transfers involving the array are via the IOS. 

The IOS buffers and distributes data between the DFC and the ILLlAC IV 
array. The IOS has a 256-bit bidirectional interface with each of the two 
DFC units and a 1024-bit bidirectional interface with the ILLIAC IV 
array. The IOS also provides a 1024-bit wide external data link to the array. 

The DC receives control words over the scan bus interface and fetches I/O 
descriptors over the multiplexor word interface in response to these control 
words. The DC sends result descriptors over the scan bus upon the 
completion of 110 transactions. Certain I10 descriptors cause the DC to 
send words of data, fetched over the multiplexor word interface, to the CU, 
where they are treated as instructions by the TMU. There is a 48-bit 
bidirectional interface between DC and TMU for these transfers. 

B 6700 CONTROL COMPUTER SUBSYSTEM 

The primary functions of the B 6700 control computer are to execute the 
supervisory program and prepare programs for the ILLIAC IV by 
assembling, compiling, etc. The supervisory program schedules jobs for the 
array; maintains the parallel disk files; transmits control records 
(descriptors) to the 110 Subsystem, which directs the I10 transactions in 
and out of the array; responds to interrupt conditions from the array and 
elsewhere; and communicates with the user and operator. 



As a secondary function, the B 6700 has associated with it a full range of Data Communications 
peripheral equipments. Consequently, the B 6700 provides the ILLIAC IV 
system with such peripheral capabilities as may be needed. On-line data Because the B 6700 is designed for multiprocessing, the system readily 

the system by including a Data accommodates applications and procedures requiring datacommunication may be added to 
Communication Processor and line adapters. 

B 6700 CONTROL COMPUTER SUBSYSTEM 

L 

J'!

communications. The B 6350Data Communications Processor (DCP) is the 
heart of the data communications network. It is a small, special-purpose 
computer containing the registers, logic, and translation ability to perform 
all the basic functions associated with sending and receiving data. Up to 8 
DCP's can be connected to a B 6700 and each can handle up to 256 
communications lines. Adapters are available to handle line speeds up to 
9600 baud,Touch-Ton&, Audio Response, and Automatic Dial Out. The 
number of lines mat can be serviced by a DCP varies as a function of line 
speed, loading, and discipline as well as the terminal mix and the 

PROCESSOR 
application. 

An interface with the ARPA Network has been developed for users needing 
this type of data communication, and will be installed on the initial ILLlAC 
IV at Ames Laboratories. 

ARPA INTERFACE I 

ADAPTER 6~egisteredtrademark of the AT & T Co. 
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DATA FLOW 


The history of one program being executed in the ILLIAC IV can be 
tracked by tracing the sequential steps in the flow of data during the 
execution of a job from the gleam in the operator's eye to the production 
of the final printout. The steps in the data path are as follows. 

Data enters the system from the peripherals of the B 6700, initially. I f  the 
data for this job is the result of output from a previous task, the data may 
be found in a bulk store. This data will be moved from the external source, 
whatever it is, to the parallel disk file before the job is executed. 

For data coming from the bulk store, the data path is to the BIOM and then 
to the ILLIAC disk (Path 1B in the figure). For data brought in from 
peripheral devices, the path is shown as "IA" through the multiplexor in 
the figure. The B 6700 MCP controls this path. At  the programmer's 
option, the B 6700 may perform formatting or preprocessing of the data on 
entrance. However, it is expected that such formatting or preprocessing can 
be done more expeditiously on the ILLlAC IV array, which will have the 
additional advantage of avoiding the potentially inefficient situation of 
having the array idle waiting on the B 6700. 

Array processing starts by taking all the data collected on the disk and 
moving only that portion required by the beginning of the program into the 
array memory; that is, the PEMs are collectively treated as a single memory 
bank (path "2" in the figure). This move is under the control of the MCP 
in the B 6700. 

To make all data transfers efficient, an Optimizer is included in the I10 
Subsystem so that many independent blocks of data, which could be 
transferred together, can be included into a single transfer operation with a 
single access time, without the necessity of being combined under a single 

hardware address. The Optimizer controls will allow the MCP to put 
together as many as 15 disk file a&lresses into a single package, which, 
barring conflicts, will all be read during a single disk revolution of 40 ms. 

8 -.-8 y 3 3.; 
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As processing proceeds in the array, various data objects will be created in 
the array, and sent to disk (path "3" of the figure). These include restart 
information, overlayed information in the case of problems that do not f i t  
in main memory, and intermediate results. In the present design of ILLIAC 
IV, the B 6700 MCP has the responsibility of disk space assignment, and 
such actions are initiated by an interrupt to the B 6700 MCP which issues 
the control words to the 110 Subsystem. 

At the end of data manipulation, all results of array processing will be on 
disk, and outputs destined for users are transferred, via BIOM, to 
peripherals via the B 6700 multiplexor. Outputs destined for use by jobs 
for subsequent execution on the array are transferred to the bulk 
store. These transfers are under the control of the B 6700 MCP. 

Use of the ILLIAC LV may, in some cases, involve postprocessing executed 
by programs in the B 6700. In general, use of the ILLlAC IV array for 
postprocessing is encouraged for the same reasons as for preprocessing. 

The flow of both data and instructions is essentially identical up to the 
point of being inserted into the PEMs. The one exception is in 
preprocessing of data recommended for execution in the array rather than 
in the B 6700. The corresponding action on program instructions is 
compiling which will be done on the B 6700 for the program to be run on 
the array. 

Once in the array processor, however, flow of data and instructions i s  
different. Data generally is segregated into the individual Processing 
Element Memories, and is fetched to a Processing Element from i t s  own 
Processing Element Memory, and restored into that Processing Element 
Memory. Two mechanisms break through this segregation of data into 



separate Processing Element 
Memories. The first is called 
"routing", the capability of the 
Processing Elements to shift data 
a mo ng themselves. The second 
mechanism lies in the Control Unit 
which sees all of the Processing Ele- 
ment Memories as one single 
memory bank. The Control Unit (a 
65th, different processor, itself) can 
fetch any word from this memory 
bank. In some cases it will "broad- 
cast" such a word of data in parallel 
to all Processing Elements. 

Programs stored in the memory 
bank are seen by the Control 
Unit. Instructions are fetched in 
blocks of 16 instructions at a time, 
and fed, one instruction at a time, 
into the instruction decoding 
m a c h i n e r y  o f  the Control 
Unit. Although 64 data streams 
can be worked on simultaneously, 
- one going between each Pro- 
cessing Element and i t s  Processing 
Element Memory, only one 
instruction stream is being decoded 
(that instruction stream being 
fetched to the Control Unit and 
executed from there). lnstructions 
are expected normally to be read- 
only, and to be stored in the first 
6.25% of memory addresses where 
protection against writing is avail-
able. 
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SOFTWARE 

The l L L l  AC IV software currently includes a macro-assembler, a 
FORTRAN compiler, an operating system, and a basic library of intrinsic 
functions and utility routines. A brief description of each follows: 

ASSEMBLER - The I L L I A C  I V  assembly language 
corresponds directly to the ILLlAC IV set of instructions. In 
addition, there is a set of pseudo-opcodes which handles such 
activities as allotting storage and loading data in the Processing 
Element* Memories. The assembler also has numerous control 
options for simplifying the updating files. 

FORTRAN COMPILER - ILLIAC FORTRAN is an extension 
of ANSI FORTRAN. The additional syntax makes it possible 
to operate explicitly on vectors and to express the kind of 
parallelism exploitable on the l LLlAC IV. 

To distinguish operations or vectors from those on subscripted 
variables, the concept of a binary vector has been 
introduced. A binary vector is a string of bits; the number of 
bits being equal to the length of the vector with which it will 
be used. The bits in the binary vector can be set and reset 
either explicitly or implicitly by logical operations. When 
operations on a vector ararequired, a binary vector is used as a 
subscript. Code is emitted by the compiler so that the stated 
operation is performed on all those elements of the vector 
whose corresponding bits are set in the binary vector. 

I L L l AC FORTRAN affords highly sophisticated matrix 
manipulations through its vector operations capability. The 
columns to be manipulated can be selected by placing a binary 
vector in the column subscript position. A specific row can be 
selected by using a scalar in the row subscript position; a 
different row element for each of the columns can be selected 
by placing an integer vector in the row subscript position. This 
integer vector would contain a row number corresponding to 
each column. Thus, for example, it is possible to operate on 
every other member of the diagonal of a matrix in one 
FORTRAN statement. 

To aid the programmer further, the compiler allows 
subprograms to be compiled separately and assembler code to 
be interspersed with the ILLIAC FORTRAN code. A wide 
range of file maintenance features is also included. 

INTRINSICS AND UTl LlTlES - A library of the standard 
intrinsic functions has been written. Included are the 
trigonometric functions, the natural logarithm, the 
exponential, and square root. They all have an accuracy of 15 
to 16 octal characters. Many utility routines have been adapted 
for the ILLIAC IV. Among these are routines to handle 
Newton-Rapheson solutions, eigen-value problems, fast Fourier 
transforms, and Monte Carlo techniques. 

OPERATING SYSTEM -The operating system controls the 
l LLlAC IV environment. The operating system prepares a job, 
schedules it, moves its data and its program in and out of the 
array, and handles all ILLIAC disk transfers. The operating 
system can control the tasks for several jobs simultaneously. 

The width of a vector is immaterial. As far as the programmer 
is concerned, the operation is done simultaneously on al l  
elements specified by the binary vector. 




